
Building Discount ECAs for the Study of Rapport
Ivan Gris, David Novick, Diego A. Rivera, Mario Gutierrez, Adriana Camacho, Alex Rayon

 The University of Texas at El Paso
El Paso, TX 79968

(915) 747- 8959

ivangris4@gmail, novick@utep.edu, darivera2@miners.utep.edu,
mgutierrez19@miners.utep.edu, accamacho2@miners.utep.edu, amrayon2@miners.utep.edu

ABSTRACT

In this paper, we report our experience in using off-the-shelf

software and hardware to build embodied conversational agents in

immersive environments. Our underlying research focuses on

paralinguistic factors in building rapport between humans and

ECAs, and conducting this research requires ECAs that can (a)

produce sophisticated full-body animation and (b) interact with

humans across multiple sessions. Our approach to building these

ECAS includes motion capture for defining animations, blending

of animations to produce more realistic and complex movements,

recognizing compound gestures, and defining and implementing

an XML-based interpreter for human-ECA interaction scenes.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents

General Terms

Design, Human Factors

Keywords

Full-body virtual agents

1. INTRODUCTION
Our research group studies human-agent dialog, with a particular

focus on paralinguistics and building of rapport over time. For

this work, we need fully functional embodied conversational

agents (ECAs), created within the modest budget of a typical

university research team, that can (a) incorporate sophisticated

full-body animation and (b) interact with humans across multiple

sessions. This paper reports how we created a platform for ECAs

with greater naturalness and modifiability of animation than that

provided by shared platforms, at a significant discount relative to

commercial systems, and with lightweight scripting through which

multiple interaction scenarios can be easily written and refined.

 Using systems such as Unity and the Kinect, we were able to

complete the platform after about 18 months of work—some

focused, some trial-and-error. Today we are able to create new

agents, which differ from each other in terms of looks, movement,

domain, and functionality, in less than a month. Our ECAs have

full-body naturalistic animation based on motion-capture and

blending. New interactional scenarios can be developed and tested

in very little time; about 20 scenes for our newest agent were

developed in about three months. Because we use a Kinect sensor

and a prosumer-grade game engine that has an accessible monthly

subscription service, the marginal out-of-pocket expense of

developing a new agent is less than $200.

In this paper we describe our approach for creating modular ECAs

that provide a virtually unlimited set of animations, full-body

gesture recognition, and lightweight scripting of scenarios. We

briefly review other agents and platforms. We present how we

create and process our animations, and how we address the

challenge of creating movements for our agents that loop, blend,

transition and even combine with each other to ensure that each

gesture is unique and no animations are repeated. We present two

examples of advanced intelligent agents capable of multimodal

interaction that we developed using our platform. Finally, we

conclude with limitations, future improvements, and potential

applications of our system.

2. BACKGROUND
Researchers in the field of intelligent multimodal interaction have

developed impressive ECAs that serve as aspirational models for

our discount approach. Notable examples, among many, include:

 REA, a real estate agent who can help you choose a

house that fits your needs and personal taste based on

specific questions and chit-chat [1].

 Louise, a virtual nurse who talks patients though the
hospital discharge process and assesses their

understanding of medical instructions [2].

 Ada and Grace, responsive virtual-human museum

guides [3].

 Sergeant Blackwell, a U.S. Army soldier who answers a

wide range of questions, including open-ended

questions [4].

Powerful platforms for development of ECAs are available (e.g.,

the Virtual Human Toolkit [5]), based on standards, such as FML

and BML, and frameworks that integrate them, such as SAIBA

[6]. A drawback of this approach is that, to produce an animation

through BML, developers can control only specific, predefined

body parts (head, torso, gaze, body, lips, legs, gesture and

speech). In addition, a script needs to be created with all the rules

and parameters per animation [7]. VHT provides semi-automated

animation, such as for gestures in speech, but our underlying

research on paralinguistics and rapport required animation that

could be more naturalistic, more dynamic, and more

parameterized (e.g., in terms of gesture amplitude). As a result, we

developed our own (discount) platform for building ECAs.

3. ANIMATION
In our platform, animations for ECAs are developed with motion

capture and combined with animation graphs.

3.1 Motion Capture
Motion capture involves recording and tracking the movements of

a person and saving the movement files to be applied to a 3D

model. This is usually an expensive process requiring a large

studio, dozens of cameras and tracking suits, and expensive

software. This process is typically time consuming and often

requires post-processing to remove undesired movements from the

recorded animations.

We needed a much faster, much simpler approach to motion

capture. Developing our agents’ animations by hand would not be

sufficient. First, creating animations manually requires a person

with expertise in 3D modeling and animation programs, and the

animations can take a long time to develop, especially if you need

enough variety to prevent users from noticing repeated

animations. Second, our research focuses on naturalistic

movement, so we preferred our agents to express actual human

movement rather than an animator’s idea of this movement.

Our solution consists of using two Kinects, one placed in front

and one to the side of the person modeling the movements. We

record and process the movements using iPi Soft [8], a small,

inexpensive applications that records the depth field from one or

two Kinects. This approach is “markless,” which means it does

not require the actors to wear a suit or any type of sensors) and

saves the animation files. Figure 1 shows rendering and pre-

visualizations of movements we recorded.

Figure 1. Rendering and pre-visualizations of recorded

animations.

For some scenarios, our agent had to produce special movements

and gestures, such as would be used in climbing a cliff. For these

movements, we left the confines of our lab to go on-location, such

as at the climbing wall of the university’s Recreation and Fitness

Center (see Figure 2).

Figure 2. One of the authors recording the climbing animation

using the university’s climbing-wall facilities.

Our approach does have two disadvantages. First, the animation

requires significant processing time after being recorded. On

average, it takes an hour to process ten seconds of animation.

Second, the system is only capable of dealing with full-body

motion capture under optimal conditions and continuous

calibration. This is a process to which we have grown

accustomed, but it means that we do not have motion capture for

facial movement. As a result, we create our facial animations

manually. But on the plus side, iPi Soft is 100 times less

expensive than any other solution we could find, and it is good

enough to get the job done.

3.2 Animation Graphs
Once the animations are recorded and available, we use Unity 4,

as our game engine for displaying the agents and their

environments. Mecanim is a system within Unity that enables us

to create an almost unlimited array of animations.

Animations are played by a state graph that makes decisions

depending on specific parameters. These parameters specify when

an animation should start, end or blend with another animation.

Multiple animations can be blended to obtain a completely

different animation in real time and give the user the illusion that

the agent never moves in exactly the same way twice.

Transitions between animations are also controlled by this system

using a graphical representation of the states in the user interface,

so animations can only transition between connected animation

states.

Finally, animations are divided into layers that can control

different parts of the body, so multiple animations can be played

at the same time and affect different limbs of the agent. For

example, the agent can have a blinking and talking animation on

the face, an animation of explanatory gestures on the arms, and a

walking animation from the hips down. The animations are played

when Mecanim receives information about the specific animation

to be played, the length of the dialog that the agent will say (only

if applicable; the length is also necessary to activate the lip-sync

function), and the position where the agent should be (in case

there is any translation movement within the virtual scene, e.g.

walking). Figure 3 shows Mecanim’s graphical representation of

the transitions between animation states; layers are listed on the

top left and parameters on the bottom left.

Figure 1. Graphical representation of the transitions between

animation states.

By using our motion capture approach and combining and

transitioning animations in Mecanim, we can create an almost

limitless supply of unique animations that give users the

impression that they are seeing unique, non-repeating movements.

These animations can be applied to any humanoid character.

Figure 4 shows a Mecanim configuration example for one of our

agents.

Figure 2. Mecanim configuration example.

4. GESTURE RECOGNITION
Part of our research in paralinguistics for ECAs involves tracking

the similarity of gestures between human and ECA. As a result we

needed a gesture-perception counterpart to our movement-

expression animation.

In our approach, we recognize gesture using a Kinect and an

application that we developed that tracks the 20 joints captured by

the Kinect and calculates the angles between them. Our

application then tracks the angles of the relevant joints for a

gesture (e.g., wrists, elbows and shoulders in Figure 5). If the

angles fall within the range of a predefined set of joint angles, we

detect the pose in real time and message the agent to react

accordingly if appropriate.

Figure 3. The gesture recognition system detecting the crossed-

arms pose.

To generate our pose library, our system is able to take

screenshots of subjects performing a particular pose. These record

the position of all user-specified joints. Several subjects perform

the same pose. When we have enough subjects, the system

calculates the average angles and creates an appropriate margin of

error. This can be integrated into a pose library, which enables the

system to recognize immediately the newly added position in any

person using the system. To avoid poses overlapping, such as

detecting two different poses simultaneously in the same

participant, we create a filter in the end application that permits

the recognition of only the most probable or appropriate pose.

This context-specific pose recognition is a gesture analogue for

context-constrained recognition of speech; we reduce effective

perplexity by limiting the number of items that can be recognized.

We have used this system as both a real-time interaction element

and to partially annotate known behaviors. For poses or gestures

in the pose library, the system can log each pose, record the video,

and include timings [9].

5. LIGHTWEIGHT SCRIPTING
Because our research studies the development of human-ECA

rapport over time, we have to produce multiple scenarios for each

agent. Our agent currently under development, which interacts

with a human in a jungle-survival story, is designed for periodic

interaction over days or even weeks. The agent has about 20

individual scenarios, each about four to six minutes long. While

our agents’ scenes are refined through usability and playability

testing (see [10]), development and revision of the scenes has to

be lightweight.

Accordingly, we needed a system for authoring and interpreting

interactions that would enable us to increase the number and

length of the interactions with little or no coding. Toward this

end, we developed a dialog interpreter that parses an XML

document and links dialogs through conditions, similar to an if-

then-else statement. The file also includes the human’s responses

expected at specific parts of the scenario. Figure 6 presents a brief

example of the XML files for a scenario in which the agent asks

the human about the weather.

Figure 4. XML file example for a simple question.

After the interpreter processes the file, it builds a dialog tree that

represents the relationships of the dialogs through the scenario,

enabling the system to follow the continuity of the story based on

the human’s verbal and physical responses. These responses are

constrained to the context of the story that the agent and the user

are experiencing. Figure 7 shows an abstract representation of the

dialog tree for the scenario from Figure 6.

Figure 5. Simplest form of the dialog tree.

Dialog trees do not have to be divided into positive and negative

answers. In fact, they can represent the paths for any condition. In

the scenarios we are writing for the jungle-survival story, the

interaction typically converges at an intended point. For example,

the agent might ask the human if the human knows how to start a

fire. If the human answers yes, then the agent asks the human to

teach the agent how to start a fire; if the human answers no, then

the agent teaches the human. Thus we designed our dialog

representation so that the dialog tree can diverge or converge at

certain states and can have a series of nested conditions.

6. CONCLUSION
We believe that our platform can be used to implement a series of

full-body 3D agents for many different domains and purposes,

without great expense. In particular, it can enable researchers to

develop applications that make use of complex full-body gestures

and that recognize relatively complex gestures. Our lightweight

approach to authoring and interpreting dialog enables developers

to prototype and refine interaction scenarios rapidly.

Our system requires expertise with the different software packages

needed to deploy the agent. These packages include Autodesk

Maya, the Unity3D game engine, and its Mecanim functions. Our

approach also requires some basic knowledge of C# to code the

activities and gestures. Our system lacks facial motion capture and

facial gesture recognition, and it is not able tto track the

movement of individual fingers.

Our future work is geared toward creating additional modules that

enhance the behavioral capabilities of our agents, with a specific

focus on the paralinguistics and relationship-building. We are

currently working on a module that enables agents to remember

simple elements of previous interactions. Agents will be able to

refer to this information at appropriate times during the dialog,

which will we expect to increase users’ perceptions of rapport

based on shared experience.

7. REFERENCES
[1] Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L.,

Chang, K., Vilhjálmsson, H., & Yan, H. (1999, May).

Embodiment in conversational interfaces: Rea. In

Proceedings of the SIGCHI conference on Human Factors in

Computing Systems (pp. 520-527). ACM.

[2] Bickmore, T. W., Pfeifer, L. M., & Jack, B. W. (2009, April).

Taking the time to care: empowering low health literacy

hospital patients with virtual nurse agents. In Proceedings of

the SIGCHI Conference on Human Factors in Computing

Systems (pp. 1265-1274). ACM.

[3] Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec,

P., Bronnenkant, K., ... & White, K. (2010, January). Ada

and Grace: Toward realistic and engaging virtual museum

guides. In Intelligent Virtual Agents (pp. 286-300). Springer

Berlin Heidelberg.

[4] Leuski, A., Patel, R., Traum, D., & Kennedy, B. (2009, July).

Building effective question answering characters. In

Proceedings of the 7th SIGdial Workshop on Discourse and

Dialogue (pp. 18-27). Association for Computational

Linguistics.

[5] Hartholt, A., Traum, D., Marsella, S. C., Shapiro, A.,

Stratou, G., Leuski, A., & Gratch, J. (2013, August). All

together now: Introducing the virtual human toolkit. In

International Conference on Intelligent Virtual Humans

(Edinburgh, UK).

[6] Vilhjálmsson, H., Cantelmo, N., Cassell, J., Chafai, N. E.,

Kipp, M., Kopp, S., ... & Van Der Werf, R. J. (2007,

January). The behavior markup language: Recent

developments and challenges. In Intelligent virtual agents

(pp. 99-111). Springer Berlin Heidelberg.

[7] Kopp, S., Krenn, B., Marsella, S., Marshall, A. N.,

Pelachaud, C., Pirker, H., & Vilhjálmsson, H. (2006,

January). Towards a common framework for multimodal

generation: The behavior markup language. In Intelligent

virtual agents (pp. 205-217). Springer Berlin Heidelberg.

[8] http://ipisoft.com/.

[9] Gris, I., Novick, D., Gutierrez, M., & Rivera, D.A. (in press).

The “Vampire King” (version 2) corpus. In Proceedings of

LREC 2014 Workshop on Multimodal Corpora.

[10] Novick, D., Vicario, J., Santaella, B., Gris, I. (in press).

Empirical analysis of playability vs. usability in a computer

game. In Proceedings of HCI International 2014.

http://ipisoft.com/

