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ABSTRACT 

In this paper, we report our experience in using off-the-shelf 

software and hardware to build embodied conversational agents in 

immersive environments. Our underlying research focuses on 

paralinguistic factors in building rapport between humans and 

ECAs, and conducting this research requires ECAs that can (a) 

produce sophisticated full-body animation and (b) interact with 

humans across multiple sessions. Our approach to building these 

ECAS includes motion capture for defining animations, blending 

of animations to produce more realistic and complex movements, 

recognizing compound gestures, and defining and implementing 

an XML-based interpreter for human-ECA interaction scenes.  
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I.2.11 [Distributed Artificial Intelligence]: Intelligent agents  

General Terms 

Design, Human Factors 
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1. INTRODUCTION 
Our research group studies human-agent dialog, with a particular 

focus on paralinguistics and building of rapport over time. For 

this work, we need fully functional embodied conversational 

agents (ECAs), created within the modest budget of a typical 

university research team, that can (a) incorporate sophisticated 

full-body animation and (b) interact with humans across multiple 

sessions. This paper reports how we created a platform for ECAs 

with greater naturalness and modifiability of animation than that 

provided by shared platforms, at a significant discount relative to 

commercial systems, and with lightweight scripting through which 

multiple interaction scenarios can be easily written and refined. 

 Using systems such as Unity and the Kinect, we were able to 

complete the platform after about 18 months of work—some 

focused, some trial-and-error. Today we are able to create new 

agents, which differ from each other in terms of looks, movement, 

domain, and functionality, in less than a month. Our ECAs have 

full-body naturalistic animation based on motion-capture and 

blending. New interactional scenarios can be developed and tested 

in very little time; about 20 scenes for our newest agent were 

developed in about three months.  Because we use a Kinect sensor 

and a prosumer-grade game engine that has an accessible monthly 

subscription service, the marginal out-of-pocket expense of 

developing a new agent is less than $200. 

In this paper we describe our approach for creating modular ECAs 

that provide a virtually unlimited set of animations, full-body 

gesture recognition, and lightweight scripting of scenarios. We 

briefly review other agents and platforms. We present how we 

create and process our animations, and how we address the 

challenge of creating movements for our agents that loop, blend, 

transition and even combine with each other to ensure that each 

gesture is unique and no animations are repeated. We present two 

examples of advanced intelligent agents capable of multimodal 

interaction that we developed using our platform. Finally, we 

conclude with limitations, future improvements, and potential 

applications of our system. 

2. BACKGROUND 
Researchers in the field of intelligent multimodal interaction have 

developed impressive ECAs that serve as aspirational models for 

our discount approach. Notable examples, among many, include: 

 REA, a real estate agent who can help you choose a 

house that fits your needs and personal taste based on 

specific questions and chit-chat [1]. 

 Louise, a virtual nurse who talks patients though the 
hospital discharge process and assesses their 

understanding of medical instructions [2]. 

 Ada and Grace, responsive virtual-human museum 

guides [3]. 

 Sergeant Blackwell, a U.S. Army soldier who answers a 

wide range of questions, including open-ended 

questions [4]. 

Powerful platforms for development of ECAs are available (e.g., 

the Virtual Human Toolkit [5]), based on standards, such as FML 

and BML, and frameworks that integrate them, such as SAIBA 

[6]. A drawback of this approach is that, to produce an animation 

through BML, developers can control only specific, predefined 

body parts (head, torso, gaze, body, lips, legs, gesture and 

speech). In addition, a script needs to be created with all the rules 

and parameters per animation [7]. VHT provides semi-automated 

animation, such as for gestures in speech, but our underlying 

research on paralinguistics and rapport required animation that 

could be more naturalistic, more dynamic, and more 

parameterized (e.g., in terms of gesture amplitude). As a result, we 

developed our own (discount) platform for building ECAs.  

3. ANIMATION 
In our platform, animations for ECAs are developed with motion 

capture and combined with animation graphs.  

3.1 Motion Capture 
Motion capture involves recording and tracking the movements of 

a person and saving the movement files to be applied to a 3D 

model. This is usually an expensive process requiring a large 

studio, dozens of cameras and tracking suits, and expensive 



software. This process is typically time consuming and often 

requires post-processing to remove undesired movements from the 

recorded animations. 

We needed a much faster, much simpler approach to motion 

capture. Developing our agents’ animations by hand would not be 

sufficient. First, creating animations manually requires a person 

with expertise in 3D modeling and animation programs, and the 

animations can take a long time to develop, especially if you need 

enough variety to prevent users from noticing repeated 

animations. Second, our research focuses on naturalistic 

movement, so we preferred our agents to express actual human 

movement rather than an animator’s idea of this movement. 

Our solution consists of using two Kinects, one placed in front 

and one to the side of the person modeling the movements. We 

record and process the movements using iPi Soft [8], a small, 

inexpensive applications that records the depth field from one or 

two Kinects. This approach is “markless,” which means it does 

not require the actors to wear a suit or any type of sensors) and 

saves the animation files. Figure 1 shows rendering and pre-

visualizations of movements we recorded. 

 

Figure 1. Rendering and pre-visualizations of recorded 

animations. 

For some scenarios, our agent had to produce special movements 

and gestures, such as would be used in climbing a cliff. For these 

movements, we left the confines of our lab to go on-location, such 

as at the climbing wall of the university’s Recreation and Fitness 

Center (see Figure 2). 

 

Figure 2. One of the authors recording the climbing animation 

using the university’s climbing-wall facilities. 

Our approach does have two disadvantages. First, the animation 

requires significant processing time after being recorded. On 

average, it takes an hour to process ten seconds of animation. 

Second, the system is only capable of dealing with full-body 

motion capture under optimal conditions and continuous 

calibration. This is a process to which we have grown 

accustomed, but it means that we do not have motion capture for 

facial movement. As a result, we create our facial animations 

manually. But on the plus side, iPi Soft is 100 times less 

expensive than any other solution we could find, and it is good 

enough to get the job done. 

3.2 Animation Graphs 
Once the animations are recorded and available, we use Unity 4, 

as our game engine for displaying the agents and their 

environments. Mecanim is a system within Unity that enables us 

to create an almost unlimited array of animations.   

Animations are played by a state graph that makes decisions 

depending on specific parameters. These parameters specify when 

an animation should start, end or blend with another animation. 

Multiple animations can be blended to obtain a completely 

different animation in real time and give the user the illusion that 

the agent never moves in exactly the same way twice. 

Transitions between animations are also controlled by this system 

using a graphical representation of the states in the user interface, 

so animations can only transition between connected animation 

states.  

Finally, animations are divided into layers that can control 

different parts of the body, so multiple animations can be played 

at the same time and affect different limbs of the agent. For 

example, the agent can have a blinking and talking animation on 

the face, an animation of explanatory gestures on the arms, and a 

walking animation from the hips down. The animations are played 

when Mecanim receives information about the specific animation 

to be played, the length of the dialog that the agent will say (only 

if applicable; the length is also necessary to activate the lip-sync 

function), and the position where the agent should be (in case 

there is any translation movement within the virtual scene, e.g. 

walking). Figure 3 shows Mecanim’s graphical representation of 

the transitions between animation states; layers are listed on the 

top left and parameters on the bottom left. 



 

Figure 1. Graphical representation of the transitions between 

animation states. 

By using our motion capture approach and combining and 

transitioning animations in Mecanim, we can create an almost 

limitless supply of unique animations that give users the 

impression that they are seeing unique, non-repeating movements. 

These animations can be applied to any humanoid character. 

Figure 4 shows a Mecanim configuration example for one of our 

agents. 

 

Figure 2. Mecanim configuration example. 

4. GESTURE RECOGNITION 
Part of our research in paralinguistics for ECAs involves tracking 

the similarity of gestures between human and ECA. As a result we 

needed a gesture-perception counterpart to our movement-

expression animation. 

In our approach, we recognize gesture using a Kinect and an 

application that we developed that tracks the 20 joints captured by 

the Kinect and calculates the angles between them. Our 

application then tracks the angles of the relevant joints for a 

gesture (e.g., wrists, elbows and shoulders in Figure 5). If the 

angles fall within the range of a predefined set of joint angles, we 

detect the pose in real time and message the agent to react 

accordingly if appropriate.  

 

Figure 3. The gesture recognition system detecting the crossed-

arms pose. 

To generate our pose library, our system is able to take 

screenshots of subjects performing a particular pose. These record 

the position of all user-specified joints. Several subjects perform 

the same pose. When we have enough subjects, the system 

calculates the average angles and creates an appropriate margin of 

error. This can be integrated into a pose library, which enables the 

system to recognize immediately the newly added position in any 

person using the system. To avoid poses overlapping, such as 

detecting two different poses simultaneously in the same 

participant, we create a filter in the end application that permits 

the recognition of only the most probable or appropriate pose. 

This context-specific pose recognition is a gesture analogue for 

context-constrained recognition of speech; we reduce effective 

perplexity by limiting the number of items that can be recognized. 

We have used this system as both a real-time interaction element 

and to partially annotate known behaviors. For poses or gestures 

in the pose library, the system can log each pose, record the video, 

and include timings [9]. 

5. LIGHTWEIGHT SCRIPTING  
Because our research studies the development of human-ECA 

rapport over time, we have to produce multiple scenarios for each 

agent. Our agent currently under development, which interacts 

with a human in a jungle-survival story, is designed for periodic 

interaction over days or even weeks. The agent has about 20 

individual scenarios, each about four to six minutes long. While 

our agents’ scenes are refined through usability and playability 

testing (see [10]), development and revision of the scenes has to 

be lightweight.  

Accordingly, we needed a system for authoring and interpreting 

interactions that would enable us to increase the number and 

length of the interactions with little or no coding. Toward this 

end, we developed a dialog interpreter that parses an XML 

document and links dialogs through conditions, similar to an if-

then-else statement. The file also includes the human’s responses 

expected at specific parts of the scenario. Figure 6 presents a brief 

example of the XML files for a scenario in which the agent asks 

the human about the weather. 



 

Figure 4. XML file example for a simple question. 

After the interpreter processes the file, it builds a dialog tree that 

represents the relationships of the dialogs through the scenario, 

enabling the system to follow the continuity of the story based on 

the human’s verbal and physical responses. These responses are 

constrained to the context of the story that the agent and the user 

are experiencing. Figure 7 shows an abstract representation of the 

dialog tree for the scenario from Figure 6. 

 

Figure 5. Simplest form of the dialog tree. 

Dialog trees do not have to be divided into positive and negative 

answers. In fact, they can represent the paths for any condition. In 

the scenarios we are writing for the jungle-survival story, the 

interaction typically converges at an intended point. For example, 

the agent might ask the human if the human knows how to start  a 

fire. If the human answers yes, then the agent asks the human to 

teach the agent how to start a fire; if the human answers no, then 

the agent teaches the human. Thus we designed our dialog 

representation so that the dialog tree can diverge or converge at 

certain states and can have a series of nested conditions. 

6. CONCLUSION 
We believe that our platform can be used to implement a series of 

full-body 3D agents for many different domains and purposes, 

without great expense. In particular, it can enable researchers to 

develop applications that make use of complex full-body gestures 

and that recognize relatively complex gestures. Our lightweight 

approach to authoring and interpreting dialog enables developers 

to prototype and refine interaction scenarios rapidly. 

Our system requires expertise with the different software packages 

needed to deploy the agent. These packages include Autodesk 

Maya, the Unity3D game engine, and its Mecanim functions. Our 

approach also requires some basic knowledge of C# to code the 

activities and gestures. Our system lacks facial motion capture and 

facial gesture recognition, and it is not able tto track the 

movement of individual fingers. 

Our future work is geared toward creating additional modules that 

enhance the behavioral capabilities of our agents, with a specific 

focus on the paralinguistics and relationship-building. We are 

currently working on a module that enables agents to remember 

simple elements of previous interactions. Agents will be able to 

refer to this information at appropriate times during the dialog, 

which will we expect to increase users’ perceptions of rapport 

based on shared experience. 
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